DTI-DROID: Diffusion tensor imaging-deformable registration using orientation and intensity descriptors

نویسندگان

  • Madhura Ingalhalikar
  • Jinzhong Yang
  • Christos Davatzikos
  • Ragini Verma
چکیده

This article presents a method (DROID) for deformable registration of diffusion tensor (DT) images that utilizes the full tensor information by integrating the intensity and orientation features into a hierarchical matching framework. The intensity features are derived from eigen value based measures that characterize the tensor in terms of its different shape properties, such as, prolateness, oblateness, and sphericity of the tensor. Local spatial distributions of the prolate, oblate, and spherical geometry are used to create an attribute vector called the geometric/intensity feature for matching. The orientation features are the orientation histograms computed from the eigenvectors. These intensity and orientation features are incorporated into a hierarchical deformable registration framework to develop a deformable registration algorithm for DT images. Using orientation features improves the matching of the white matter fiber tracts by taking into account the underlying fiber orientation information. Extensive experiments on simulated and real brain DT data show promising results that makes DROID potentially useful for subsequent group-based analysis of DT images to identify disease-induced and developmental changes in a population. VC 2010 Wiley Periodicals, Inc. Int J Imaging Syst Technol, 20, 99–107, 2010; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/ima.20232

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Differentiation of Edematous, Tumoral and Normal Areas of Brain Using Diffusion Tensor and Neurite Orientation Dispersion and Density Imaging

Background: Presurigical planning for glioma tumor resection and radiotherapy treatment require proper delineation of tumoral and peritumoral areas of brain. Diffusion tensor imaging (DTI) is the most common mathematical model applied for diffusion weighted MRI data. Neurite orientation dispersion and density imaging (NODDI) is another mathematical model for DWI data modeling.Objective: We stud...

متن کامل

Determining Cardiac Fiber Orientation Using FSL and Registered Ultrasound/DTI volumes.

Accurate extraction of cardiac fiber orientation from diffusion tensor imaging is important for determining heart structure and function. However, the acquisition of magnetic resonance (MR) diffusion tensor images is costly and time consuming. By comparison, cardiac ultrasound imaging is rapid and relatively inexpensive, but it lacks the capability to directly measure fiber orientations. In ord...

متن کامل

Whole-tract reduction in fractional anisotropy in the corticospinal tracts of amyotrophic lateral sclerosis patients, as measured using a weighted 3-D region of interest in template space after deformable diffusion tensor imaging registration

Introduction: Amyotrophic lateral sclerosis (ALS) is a degenerative disease of motor neurons. Diffusion tensor imaging (DTI) measurements in the corticospinal tract (CST) of patients with ALS have shown local reductions in fractional anisotropy (FA), thought to reflect degeneration of the upper motor neuron axons. Regions-of-interest (ROI) measurements can be time-consuming if they require user...

متن کامل

Diffusion Tensor Field Registration in the Presence of Uncertainty

We propose a novel method for deformable tensor-to-tensor registration of Diffusion Tensor Imaging (DTI) data. Our registration method considers estimated diffusion tensors as normally distributed random variables whose covariance matrices describe uncertainties in the mean estimated tensor due to factors such as noise in diffusion weighted images (DWIs), tissue diffusion properties, and experi...

متن کامل

Automatic Deformable Diffusion Tensor Registration for Fiber Population Analysis

In this work, we propose a novel method for deformable tensor-to-tensor registration of Diffusion Tensor Images. Our registration method models the distances in between the tensors with Geode-sic-Loxodromes and employs a version of Multi-Dimensional Scaling (MDS) algorithm to unfold the manifold described with this metric. Defining the same shape properties as tensors, the vector images obtaine...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Int. J. Imaging Systems and Technology

دوره 20  شماره 

صفحات  -

تاریخ انتشار 2010